skip to main content


Search for: All records

Creators/Authors contains: "Israel, Frank P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The CO-to-H 2 conversion factor ( α CO ) is central to measuring the amount and properties of molecular gas. It is known to vary with environmental conditions, and previous studies have revealed lower α CO in the centers of some barred galaxies on kiloparsec scales. To unveil the physical drivers of such variations, we obtained Atacama Large Millimeter/submillimeter Array bands (3), (6), and (7) observations toward the inner ∼2 kpc of NGC 3627 and NGC 4321 tracing 12 CO, 13 CO, and C 18 O lines on ∼100 pc scales. Our multiline modeling and Bayesian likelihood analysis of these data sets reveal variations of molecular gas density, temperature, optical depth, and velocity dispersion, which are among the key drivers of α CO . The central 300 pc nuclei in both galaxies show strong enhancement of temperature T k ≳ 100 K and density n H 2 > 10 3 cm −3 . Assuming a CO-to-H 2 abundance of 3 × 10 −4 , we derive 4–15 times lower α CO than the Galactic value across our maps, which agrees well with previous kiloparsec-scale measurements. Combining the results with our previous work on NGC 3351, we find a strong correlation of α CO with low- J 12 CO optical depths ( τ CO ), as well as an anticorrelation with T k . The τ CO correlation explains most of the α CO variation in the three galaxy centers, whereas changes in T k influence α CO to second order. Overall, the observed line width and 12 CO/ 13 CO 2–1 line ratio correlate with τ CO variation in these centers, and thus they are useful observational indicators for α CO variation. We also test current simulation-based α CO prescriptions and find a systematic overprediction, which likely originates from the mismatch of gas conditions between our data and the simulations. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  2. Abstract The CO-to-H 2 conversion factor ( α CO ) is critical to studying molecular gas and star formation in galaxies. The value of α CO has been found to vary within and between galaxies, but the specific environmental conditions that cause these variations are not fully understood. Previous observations on ~kiloparsec scales revealed low values of α CO in the centers of some barred spiral galaxies, including NGC 3351. We present new Atacama Large Millimeter/submillimeter Array Band 3, 6, and 7 observations of 12 CO, 13 CO, and C 18 O lines on 100 pc scales in the inner ∼2 kpc of NGC 3351. Using multiline radiative transfer modeling and a Bayesian likelihood analysis, we infer the H 2 density, kinetic temperature, CO column density per line width, and CO isotopologue abundances on a pixel-by-pixel basis. Our modeling implies the existence of a dominant gas component with a density of 2–3 × 10 3 cm −3 in the central ∼1 kpc and a high temperature of 30–60 K near the nucleus and near the contact points that connect to the bar-driven inflows. Assuming a CO/H 2 abundance of 3 × 10 −4 , our analysis yields α CO ∼ 0.5–2.0 M ⊙ (K km s −1 pc 2 ) −1 with a decreasing trend with galactocentric radius in the central ∼1 kpc. The inflows show a substantially lower α CO ≲ 0.1 M ⊙ (K km s −1 pc 2 ) −1 , likely due to lower optical depths caused by turbulence or shear in the inflows. Over the whole region, this gives an intensity-weighted α CO of ∼1.5 M ⊙ (K km s −1 pc 2 ) −1 , which is similar to previous dust-modeling-based results at kiloparsec scales. This suggests that low α CO on kiloparsec scales in the centers of some barred galaxies may be due to the contribution of low-optical-depth CO emission in bar-driven inflows. 
    more » « less